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Abstract The Morita approximation is a constrained annealing procedure which
yields upper bounds on the quenched average free energy for models of quenched
randomness. In this article we consider a bilateral Dyck path model, first introduced
by S.G. Whittington and collaborators, of the localization of a random copolymer
at the interface between two immiscible solvents. The distribution of comonomers
along the polymer chain is initially determined by a random process and once chosen
it remains fixed. Morita approximations in which we control correlations to various
orders between neighbouring monomers along the polymer chain are applied to this
model. Although at low orders the Morita approximation does not yield the correct
path properties in the localized region of the phase diagram, we show that this prob-
lem can be overcome by including sufficiently high-order correlations in the Morita
approximation. In addition, by comparison with an appropriate lower bound, we show
that well-within the localized phase the Morita approximation provides a relatively
tight upper bound on the limiting quenched average free energy for bilateral Dyck
path localization.
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1 Introduction

In this article, we consider a random copolymer as a linear polymer composed of two
types of comonomers, A, B, with the sequence of As and Bs making up the polymer
being determined by a random process. Once the comonomer sequence is determined
it remains fixed, and hence the randomness is quenched. We consider the case that
the polymer is in dilute solution with two immiscible solvents (oil and water, say)
where comonomer A prefers one solvent (oil, say) while comonomer B prefers the
other (water). There is experimental evidence that in such situations the polymer can
be localized near the interface between the two solvents so that each comonomer is
in its preferred solvent [1, 2]. On the other hand, at high enough temperatures, it is
expected that entropic considerations will dominate and the polymer will be primarily
away from and on one side of the interface, i.e. delocalized. The transition from a
delocalized to a localized state is referred to as the localization phase transition for
copolymers (see [3], Sect. 2.2 and references therein).

For random copolymers, the appropriate free energy is the expectation (over the
monomer distribution) of the logarithm of the partition function; this is referred to
as the quenched average free energy. In order to investigate the localization phase
transition we are thus interested in the limiting (as the polymer length goes to infinity)
quenched average free energy per monomer and its points of non-analyticity.

For this purpose, we investigate a directed walk model of random copolymer locali-
zation. The model is based on the self-avoiding walk model first introduced by Martin
et al. [4] and Madras and Whittington [5]. However, a simpler bilateral Dyck path
model is used for the configuration of the polymer. For a discussion of other models
of random copolymer localization see ([3], Sect. 2.2). A closed form expression for
the limiting quenched average free energy of localization is not available even for this
simpler bilateral Dyck path model. Instead we investigate a sequence of upper bounds
on the limiting quenched average free energy obtained using Morita approximations.

Recently, Alvarez et al. [6] developed a sequence of Morita upper bounds on the
limiting quenched average free energy for Dyck and Motzkin path models of random
copolymer adsorption. Well-within the adsorbed region of the phase diagram, they
showed that by including higher and higher orders of correlations the Morita approx-
imation upper bounds on the limiting quenched average free energy become increas-
ingly better and even at small orders are already tight bounds. In this article, we adapt
the direct renewal arguments introduced in [6] to obtain a sequence of Morita upper
bounds on the limiting quenched average free energy for the localization of bilateral
Dyck paths.

The annealed and first-order Morita approximations for bilateral Dyck path locali-
zation are well-understood [7, 8]. At these low orders the Morita approximation does
not yield the correct path properties in the localized region of the phase diagram.
In particular, for the first-order Morita a phase consisting of a mixture of the two
delocalized phases can exist [7]. We show that this problem can be overcome by
including sufficiently high-order correlations in the Morita approximation. In addi-
tion, by comparison with an appropriate lower bound, we show that well-within the
localized phase the Morita approximation provides a relatively tight upper bound on
the limiting quenched average free energy for bilateral Dyck path localization.
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The article is organized as follows. The model is introduced in Sect. 2. A review
of the annealed and first-order Morita results of [7, 8] is given in Sect. 3. Precise def-
initions of the terms “mixture phase” and “truly localized phase” are also given in
Sect. 3. The background and notation needed to explain higher order Morita approxi-
mations is presented in Sect. 4. The application of the direct renewal Morita approach
to bilateral Dyck path localization is discussed in Sect. 5. In Sect. 6, expressions for the
mixture phase free energy are presented, and then results and conclusions are given,
respectively, in Sects. 7 and 8.

2 The localization model and bilateral Dyck paths

A bilateral Dyck path [7, Fig. 1] is a walk in two dimensions which

1. starts at the origin and ends on the line y = 0 and
2. has steps (of length

√
2) only in the directions (1, 1) and (1,−1).

In bilateral Dyck path models for localization, any path ω of length n can be repre-
sented by the sequence ω = (ω0, ω1, . . . , ωn), where ωi represents the i th vertex of
the path having x-coordinate i and y-coordinate ωi . A vertex with y = 0 is called a
visit. Consider a sequence of i.i.d. Bernoulli random variables χ = (χ1, χ2, . . . , χn)

and associate it with the path ω by assigning the colour χi ∈ {0, 1} to vertex i .
(χi = 1 corresponds to comonomer A at vertex i .) Let p be the probability that
χi = 1. For j ∈ {−1, 0, 1}, let �

j
i (ω) be a function that indicates the location of

the i th vertex of ω relative to the interface, i.e. �
j
i (ω) = 1 if the sign of ωi = sign

of j (the case j = 0 indicates a visit at vertex i) and �
j
i (ω) = 0 otherwise; let

� j (ω) = (�
j
i (ω), i = 1, . . . , n). Using the model from [5] (see also [7, 8]), the

appropriate partition function for the set, �n , of n-step bilateral Dyck paths and fixed
χ , is then

Zn(α, β, γ |χ) =
∑

ω∈�n

exp (H(α, β, γ, ω|χ)) (1)

with the Hamiltonian

H(α, β, γ, ω|χ) = α

n∑

i=1

χi�
+1
i (ω) + β

n∑

i=1

(1 − χi )�
−1
i (ω) + γ

n∑

i=1

�0
i (ω). (2)

The corresponding free energy per monomer isκn(α, β, γ |χ) = n−1log Zn(α, β, γ |χ)

and it is known that the limiting quenched average free energy,

κ̄(α, β, γ ) = lim
n→∞〈κn(α, β, γ |χ)〉 ≡ lim

n→∞ κ̄n(α, β, γ ) (3)

exists where the average is taken over the distribution of χ [5]. (The argument given
in [5] (see also [9], Lemma 1) is for self-avoiding walks but applies mutatis mutandis
for bilateral Dyck paths.)
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If the only contribution to the partition function was from paths having all but
the first and last of their vertices above (below) the interface, then the correspond-
ing limiting quenched average free energy would be given by dA(α) = αp + log 2
(dB(β) = β(1− p)+ log 2). Given a point (α, β, γ ), if κ̄n(α, β, γ ) = dA(α) (dB(β)),
then we say the system is delocalized-above (-below) at (α, β, γ ). Also, as in [5], we
say the system is delocalized at (α, β, γ ) if κ̄n(α, β, γ ) = max{dA(α), dB(β)} and
otherwise the system is considered localized. Given fixed γ , one can then define

βc(α, γ ) = sup{β|κ̄n(α, β, γ ) = αp + log 2}, (4)

with βc(α, γ ) ≡ −∞ if the set on the right-hand-side is empty. Applying the self-
avoiding walk arguments from [5] along with bounds obtained from the first-order
Morita approximation [8], it is then possible to prove the following for the localiza-
tion phase diagram of random copolymer bilateral Dyck paths.

(i) There exists γL , bounded by max{log[2/p], log[2/(1 − p)]} ≤ γL ≤ (log 2)

(max{2/p, 2/(1 − p)}), such that for any γ > γL and for any α, β the system
is localized, while for γ < γL the delocalized phase exists.

(ii) For any fixed value of γ , at every point on the line β = αp/(1 − p), except
α = β = 0 for γ ≤ 0, the system is localized and the limiting quenched

average density of visits, limn→∞
〈∑n/2

i=1 �0
2i (ω)

〉 /
n, is non-zero.

(iii) For any fixed value of γ < γL , the phase boundary β = βc(α, γ ) ≤ αp/(1 −
p) in the (α, β)-plane between the localized and delocalized-above phases
exists (i.e. there exists α such that βc(α, γ ) > −∞). Also, βc(α, γ ) is a non-
decreasing, concave function of α and is therefore continuous in α. There is a
symmetry related phase boundary between the localized and delocalized-below
phases that lies above the line β = pα/(1 − p).

(iv) For any fixed γ ≤ 0, βc(0, γ ) = 0 and the transition between the two delocal-
ized phases is first order at (0, 0, γ ).

In (ii), we have also used the fact that, for any γ > 0 the point (0, 0, γ ) is in the
interior of the localized phase for bilateral Dyck paths. This comes from the fact that
κ̄(0, 0, γ ) equals the limiting free energy for adsorbing homopolymer bilateral Dyck
paths at a penetrable surface, and hence κ̄(0, 0, γ ) = dA(0) = dB(0) = log 2 for
γ ≤ 0 and κ̄(0, 0, γ ) > log 2 for γ > 0 [10, Sect. 2.3].

These properties, together with a lower bound (such as that presented here in Eq. 35)
establish that the phase boundary has a horizontal asymptote. See [5] for schematic
figures of the phase boundary when γ ≤ 0 [5, Fig. 1] and when γ > 0 [5, Fig. 2].

3 Annealed and first-order Morita approximations for bilateral Dyck paths

The localization problem for randomly coloured bilateral Dyck paths has been inves-
tigated in the annealed approximation and also in a Morita approximation in which the
first moment of the colour distribution is fixed [7, 8]. For the annealed approximation
the limiting annealed free energy, limn→∞ n−1 log〈Zn(α, β, γ |χ)〉, is a simple linear
transform of the homopolymer limiting free energy and, although it provides an upper
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bound on the limiting quenched average free energy, it does not display all the known
properties of the quenched phase diagram. For example, for γ = 0 and α > 0 property
(ii) above does not hold for the annealed model, but rather the line β = αp/(1 − p)

forms a phase boundary between the two delocalized phases [7]. Furthermore, the de-
localized limiting annealed average free energy is max{log(p exp(α)+1− p), log(p+
(1 − p) exp(β))} + log 2, which is different from the delocalized limiting quenched
average free energy, max{dA(α), dB(β)}. However, for example for p = 1/2, fixed γ

and β ≤ α ≤ log(2 exp(γ ) − 1), there exists a delocalized-localized phase boundary
given by

β = βa(α, γ ) = log

(
1 − 4 eγ + 2eα + 2e2 γ+α − 6eγ+α + 4e2 γ + e2α − 2 eγ+2 α

2 eγ − 2 e2 γ + 2 eγ+α − 2 eα − e2 α − 1

)

(5)

which is consistent with property (iii). For p = 1/2 and any fixed γ , the two delo-
calized phases coincide along the line α = β for all β ≥ log(2 exp(γ ) − 1). (See [7,
Fig. 4] for these delocalized phase boundaries at γ = 0). Corresponding expressions
are known for general p.

The situation with respect to property (ii) improves by introducing a constraint on
the first moment of the colour distribution, namely

〈∑
i χi

〉 = np; this gives a first-order
Morita approximation. With this constraint, every point on the line β = αp/(1 − p),
except α = β = 0 for γ ≤ 0, is now localized, consistent with property (ii). However,
the limiting average density of visits can be zero along this line, and hence property (ii)
only partially holds true. More specifically, the limiting first-order Morita free energy
is given by

κ1(α, β, γ ) = lim
n→∞ n−1 log

〈
Zn(α, β, γ |χ) exp

(
λ∗ ∑

i

(χi − p)

)〉
, (6)

where λ∗ is chosen to ensure that the first moment of the colour distribution is con-
strained correctly. In this case, the delocalized phase free energy has the correct value
max{dA(α), dB(β)} and, for γ < log[2/(1 − p)], there exists a finite localized-
delocalized-above phase boundary β = β1(α, γ ) = sup{β|κ1(α, β, γ ) = dA(α)}
in the (α, β)-plane. For p = 1/2,

β1(α, γ ) =
{

log
(

c2+8 a2+2 c2a3−8 a3c−12 a2c+5 a2c2−4 ca+4 c2a
a(−8 a2+4 a2c−a2c2−2 c2a+4 ca−c2)

)
a < c/(2 − c)

log (2 − 1/a) a ≥ c/(2 − c)
(7)

where a = eα and c = eγ . This differs from the annealed phase boundary, β =
βa(α, γ ), as in Eq. 5. Corresponding expressions are known for general p. For any
α �= 0, β1(α, γ ) < αp/(1 − p), which is consistent with property (ii). Consistent
with property (iii), there is also a symmetry related localized-delocalized-below phase
boundary. (See [7, Fig. 5] for these delocalized phase boundaries at γ = 0.) Further-
more, consistent with property (i), there exists γ

(1)
L = max{log[2/(1 − p)], log[2/p]}
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such that the whole (α, β)-plane is localized for all γ > γ
(1)
L while for γ < γ

(1)
L the

delocalized phase exists.
However, in contrast to the expected quenched phase behaviour, now there exist

two types of localized phases which are separated from each other by a third phase
boundary. For example for γ = 0 and α > 0, the line β = αp/(1 − p) lies within a
region where the system is localized, since κ1(α, β, γ ) > max{dA(α), dB(β)}, but the
limiting density of visits, limn→∞〈∑i �0

2i (ω)〉/n, is zero. This is a region in which
the two delocalized phases coexist and we refer to this phase as the mixture phase. This
coexistence region is defined by a > p/(1 − b(1 − p)) and b > (1 − p/a)/(1 − p),
where a = eα and b = eβ [7]. Again for γ = 0 but now with α < 0, the line
β = αp/(1 − p) lies within a region where the system is localized and in which the
limiting density of visits is strictly positive. As this is the expected path behaviour for
the quenched system (see property (ii)), we refer to this phase as the truly localized
phase. Furthermore, for any fixed γ > − log 2, along the line β = αp/(1 − p) there
exists a critical value α∗ such that for all 0 ≤ α < α∗ the system is truly localized
while for α > α∗ the system is in the mixture phase. In fact, (α∗, α∗ p/(1 − p), γ ) is
one point on a phase boundary, β = β

(1)
m (α, γ ), between a truly localized region and

the mixture phase [8]. For (α, β, γ ) in the localized region,

β(1)
m (α, γ ) = log

(−eγ+α − 1 + 2 eγ

−eα + eγ

)
. (8)

In Fig. 1, the first-order Morita approximation phase boundaries are plotted in the
(α, β)-plane for p = 1/2 and various values of γ . In Fig. 1a, γ = 1.5 > γ

(1)
L and

hence the whole plane is localized, however, both the truly localized (including the ori-
gin) and mixture phases exist and are separated by the phase boundary β = β

(1)
m (α, γ )

as plotted. Figure 1a represents the typical situation for any γ ≥ γ
(1)
L = 2 log 2. In

Fig. 1b–e, all three phase boundaries exist. Figure 1b is for γ = 0.85 and this repre-
sents the typical situation for any log 2 ≤ γ < γ

(1)
L . Figure 1c is for γ = 0.63 and

this represents the typical situation for any 0 < γ < log 2. Figure 1d is for γ = −0.3
and this represents the typical situation for any log(2/3) < γ < 0. Figure 1e is for
γ = −0.5 and this represents the typical situation for any − log 2 < γ ≤ log(2/3).
In Fig. 1f, γ = −0.75 and the phase boundary β = β

(1)
m no longer exists. Instead,

the whole localized region consists of the mixture phase. This represents the typical
situation for γ ≤ − log 2. Note that at γ = 0, the phase boundaries are as depicted in
Fig. 1f, however, the localized phase in the third quadrant is a truly localized phase.
The concavity of the phase boundary β = β

(1)
m (α, γ ) changes sign from γ < 0 to

γ > 0.
The existence of the mixture phase can be attributed to the fact that the first moment

constraint is satisfied by placing pn of the vertices in the walk above the interface
and colouring them A, and placing the remaining (1 − p)n vertices below and col-
ouring them B. Thus the free energy can be optimized and the moment constraint
satisfied without having to consider walks which cross the interface more than once.
One expects that if further constraints on the colour distribution are introduced then the
mixture phase will be replaced by a truly localized phase. Since the first order Morita
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Fig. 1 The first-order Morita phase boundaries in the (α, β)-plane for: (a) γ = 1.5, (b) γ = 0.85,
(c) γ = 0.63, (d) γ = −0.3, (e) γ = −0.5, and (f) γ = −0.75

does yield the correct delocalized free energy, the critical curve, β1(α, γ ), bounding
the delocalized-above region is not expected to change by including more constraints
in a Morita approximation [11]. However, the bound on the limiting quenched average
free energy can be improved. Thus we investigate higher order Morita approximations
to determine what constraints are needed to yield a truly localized phase instead of a
mixture. To do this, we first introduce some background and notation about Morita
approximations.

4 Higher order Morita approximations for bilateral Dyck paths

The results of Morita [12] and others [13, 14] show that the quenched average free
energy can be obtained by the constrained optimization of an annealed free energy. To
see this, one considers a set of Lagrange multipliers λ = (λC ,∀C ⊆ {1, 2, . . . , n}) ∈
R

2n
and the corresponding partition function
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Ẑn(α, β, γ, λ|χ) = Zn(α, β, γ |χ)e
(λ|χ), (9)

where for each subset C of vertices, 
(λ|χ) is used to impose the correct distribution
for the probability that exactly the vertices in C are coloured A. Specifically,


(λ|χ) =
∑

C �=∅
λC

[(
∏

i∈C

χi

∏

i /∈C

(1 − χi )

)
− p|C|(1 − p)n−|C|

]
(10)

and the sum is over all C ⊆ {1, 2, . . . , n}. Minimizing n−1 log〈Ẑn(α, β, γ, λ|χ)〉 with
respect to the λC ’s yields the quenched average free energy κ̄n(α, β, γ ) for the model
and ensures that the colour distribution constraint is satisfied for each subset C �= ∅
[3]. That is, the minimization ensures that ∂

∂λC
log〈Ẑn(α, β, γ, λ|χ)〉 = 0 and hence

for each choice of C ⊆ {1, . . . , n}
〈
∏

i∈C

χi

∏

i /∈C

(1 − χi )

〉
= p|C|(1 − p)n−|C|. (11)

A Morita approximation, κ M
n (α, β, γ ), for κ̄n(α, β, γ ) is obtained by relaxing some

of these constraints (in the annealed case, all the λC ’s are set to zero). Minimizing
n−1 log〈Ẑn(α, β, γ, λ|χ)〉 with respect to the reduced set, λM , of λC ’s yields an upper
bound on κ̄n(α, β, γ ) for the model, i.e. κ M

n (α, β, γ ) = minλM n−1 log〈Ẑn(α, β, γ,

λM |χ)〉 ≥ κ̄n(α, β, γ ). The minimization is typically quite complicated, however, one
can also obtain an upper bound κU (α, β, γ ) on κ̄(α, β, γ ) via

κU (α, β, γ ) = min
λM

lim
n→∞

1

n
log〈Ẑn(α, β, γ, λM |χ)〉

= min
λM

{
− log

(
rG(α, β, γ, λM )

)}
≥ lim

n→∞ κ M
n (α, β, γ ) ≥ κ̄(α, β, γ )

(12)

where rG(α, β, γ, λM ) is the radius of convergence of the generating function

G(z, α, β, γ, λM ) =
∞∑

n=0

zn〈Ẑn(α, β, γ, λM |χ)〉. (13)

We use the term “order” with respect to a Morita approximation to reflect the extent
to which the colour distribution is constrained in the approximation. In particular, we
say a Morita approximation has order σ ≥ 1 when σ − 1 is the maximum distance
between vertices in a colour distribution constraint of the approximation. The annealed
approximation is referred to as the zeroth order Morita approximation.

For both the annealed and first-order Morita approaches discussed in the previous
section, G(z, α, β, γ, λM ) can be expressed in terms of a homopolymer generating
function which keeps track of the number of visits and the number of steps above
the interface in the walks. Thus (in principle) the Morita limiting free energy can
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be obtained from a re-parametrization of the well-known singularity structure of the
homopolymer model [7, 8].

For higher order Morita approximations, by using a direct renewal approach (as
introduced in [6] for random copolymer adsorption of Dyck paths), it is still possible
to relate G(z, α, β, γ, λM ) to a homopolymer generating function that will however
now be a more complicated function of the paths involved. We discuss some of the
details of this next.

5 Direct renewal for bilateral Dyck path Morita approximations

The standard factorization (or renewal) arguments for directed paths take advantage
of the fact that after the first return to the surface the remaining portion of the path is
again a directed path. However, correlation constraints such as 〈χiχi+1〉 = p2, i =
1, . . . , n − 1 are complicated to factor at the location of the first return to the surface.
This difficulty can be reduced by considering only colouring constraints on non-over-
lapping vertex sequences. In fact, given an order σ ≥ 1, for each i ≥ 0, for our
approximation the full set of colouring constraints, Eq. 11, is imposed on the vertices
(iσ + j, j = 1, . . . , σ ). Note that these sequences of vertices do not overlap. This has
the advantage that we can write the partition function almost immediately in terms of
a homopolymer partition function. We explain this in more detail now but limit our
discussion to the case σ = 2 and refer to a subsequent paper for the full details and
the generalization to higher values of even σ .

Note that for the quenched problem the distribution of χi is fixed. Hence the χi ,
i = 1, . . . , n, are i.i.d. Bernoulli and the colour distribution constraints in Eq. 11 are
automatically satisfied in the quenched average. However, for a Morita approximation,
the colouring and the walk configurations are assumed to change on the same time
scale and only those constraints in Eq. 11 which are imposed in the approximation are
guaranteed to hold in the constrained annealed average.

For the direct renewal Morita approximation with σ = 2 and n = 2k, we decom-
pose the colouring χ into k subcolourings each of length σ :

χ1, χ2︸ ︷︷ ︸
χ(1)

. . . χ2i−1, χ2i︸ ︷︷ ︸
χ(i)

. . . χ2k−1, χ2k︸ ︷︷ ︸
χ(k)

.

Then we assume that in the constrained annealed average the χ(i) = (χ
(i)
1 , χ

(i)
2 ),

i = 1, . . . , k, are independent and identically distributed such that for each i :

〈(1 − χ
(i)
1 )(1 − χ

(i)
2 )〉 = (1 − p)2 (14)

〈(1 − χ
(i)
1 )χ

(i)
2 〉 = p(1 − p) (15)

〈χ(i)
1 (1 − χ

(i)
2 )〉 = p(1 − p) (16)

〈χ(i)
1 χ

(i)
2 〉 = p2. (17)
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But otherwise the colour distribution is unconstrained. We refer to Eqs. 14–17 as the
full set of colour distribution constraints for the vertices (2i + j, j = 1, 2). To impose
these for a given i , a separate Lagrange multiplier, λ0, . . . , λ3, is introduced for the
respective constraints Eqs. 14–17. Then, due to the i.i.d. assumption on the χ(i), the
same set of multipliers is used for each i = 1, . . . , k. (Note that any three of the
constraints in Eqs. 14–17 implies the fourth, however, for simplicity we include a
Lagrange multiplier for each constraint).

Let λ = (λ0, . . . , λ3), thus the Lagrangian for the second order direct renewal
Morita approximation is given by


(2)(λ|χ) = λ0

k∑

i=1

[(1 − χ
(i)
1 )(1 − χ

(i)
2 ) − (1 − p)2]

+λ1

k∑

i=1

[(1 − χ
(i)
1 )χ

(i)
2 − p(1 − p)]

+λ2

k∑

i=1

[χ(i)
1 (1 − χ

(i)
2 ) − p(1 − p)] + λ3

k∑

i=1

[χ(i)
1 χ

(i)
2 − p2] (18)

= −k[λ0(1 − p)2 + (λ1 + λ2)p(1 − p) + λ3 p2]

+
k∑

i=1

[
λ0(1 − χ

(i)
1 )(1 − χ

(i)
2 ) + λ1(1 − χ

(i)
1 )χ

(i)
2 + λ2χ

(i)
1 (1 − χ

(i)
2 )

+λ3χ
(i)
1 χ

(i)
2 ] . (19)

Note that for a given χ and i , there is only one non-zero term in the rightmost sum-
mand of Eq. 19 and that corresponds to λ j where j is the order, o(i), of the colouring
χ(i) = (χ2i−1, χ2i ) in a lexicographic ordering of the colourings in {0, 1}2. Thus


(2)(λ|χ) = −nq(2)(λ) +
n/2∑

i=1

λo(i), (20)

where

q(2)(λ) = 1

2

(
λ3 p2 + λ2 p(1 − p) + λ1(1 − p)p + λ0(1 − p)2

)
(21)

is independent of χ . Thus the second-order direct renewal Morita approximation aver-
age partition function is given by

〈Z (2)
n (α, β, γ, λ|χ)〉 =

∑

χ

p
∑

i χi (1 − p)n−∑
i χi Zn(α, β, γ |χ)e
(2)(λ|χ)

(22)
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= e−nq(2)(λ)
∑

ω∈�n

n/2∏

i=1

[
p2eα(�+1

2i−1(ω)+�+1
2i (ω))+γ�0

2i (ω)+λ3

+p(1 − p)eα�+1
2i−1(ω)+β�−1

2i (ω)+γ�0
2i (ω)+λ2

+(1 − p)peα�+1
2i (ω)+β�−1

2i−1(ω)+γ�0
2i (ω)+λ1

+(1 − p)2eβ(�−1
2i−1(ω)+�−1

2i (ω))+γ�0
2i (ω)+λ0

]
. (23)

The term in the square brackets depends only on the sequence of 2-tuples ti (ω) =
(�+1

2i−1(ω),�+1
2i (ω)), (�−1

2i−1(ω),�−1
2i (ω)), (�0

2i−1(ω),�0
2i (ω)). Note that odd ver-

tices cannot be visits so �0
2i−1(ω) = 0, and any even vertex, ω2i , is limited to being

either a visit or on the same side of the interface as ω2i−1. Thus ti is determined by
the choice of j ∈ {−1, 1} such that �

j
2i−1(ω) = 1 and the choice of �0

2i (ω) ∈ {0, 1},
and hence ti has only four possible states. In fact ti is completely determined by
s(i)(ω) = (�−1

2i−1(ω),�0
2i (ω)). Thus the term in the square brackets in Eq. 23 has

four possible values, w j , j = 0, . . . , 3,

w j = eγ s0
[

p2eα(1−s1)(2−s0)+λ3 + p(1 − p)eα(1−s1)+βs1(1−s0)+λ2

+(1 − p)peα(1−s1)(1−s0)+βs1+λ1 + (1 − p)2eβs1(2−s0)+λ0 ] (24)

with the sequence s1s0 given by the bits in j base 2. When the term in the square
brackets equals w j (i.e. when s(i)(ω) = (s1, s0)), then we say that the i th subse-
quence, ω(i) = ω2i−1ω2i , of the walk is type j .

Hence, by grouping together all the walks that have the same numbers of subse-
quences of each of the four types one now obtains

G(2)(z, α, β, γ, λ) =
∑

n≥0

zn〈Z (2)
n (α, β, γ, λ|χ)〉 = B(2)(ze−q(2)(λ), w0, . . . , w3)

(25)

where B(2)(x0, x1, x2, x3, x4) is the generating function

B(2)(x0, x1, . . . , x4) =
∑

n≥0

xn
0

∑

m1,...,m4

bn(m1, . . . , m4)

4∏

j=1

x
m j
j (26)

for the number, bn(m1, . . . , m4), of n-edge bilateral Dyck paths with m j of its subse-
quences being type j . B(2)(x0, x1, x2, x3, x4) can be determined exactly using stan-
dard renewal (factorization) arguments, and we leave the details of that to a subsequent
paper.

For each even σ ≥ 1, the same procedure results in a homopolymer generating
function, B(σ ), from which it is possible to compute an upper bound κ

(σ)
U (α, β, γ ) via

Eq. 12. The upper bound is in terms of the singularities of B(σ ). Indeed the radius of
convergence of G(σ )(z, α, β, γ, λ) will satisfy the inequality
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rG(α, β, γ, λ) ≥ eq(σ )(λ) min
{|z1|, |z2|, . . . , |z2+nr |

}
(27)

where z3, . . . , z2+nr are the poles of B(σ ) while z1 and z2 are square root singular-
ities governing the two delocalized phases. The zi ’s are functions of α, β, γ and λ.
Therefore from Eq. 12, the upper bound κ

(σ)
U (α, β, γ ) becomes

κ
(σ)
U (α, β, γ ) = max

λ

{
q(σ )(λ) + min{log |z1|, log |z2|, . . . , log |z2+nr |}

}
. (28)

Closed form expressions for the zi ’s are available for σ = 1 and σ = 2 for bilateral
Dyck paths. For these choices of σ it is possible to determine κ

(σ)
U either exactly or

by numerical optimization, depending on the values of α, β, γ . In particular, it is still
possible to determine the delocalized phase boundaries exactly for these values of σ ,
and they do not change from first order to second order as expected [11]. For higher
values of σ , determining z2, . . . , z1+nr involves finding the roots of a polynomial
of degree greater than five. Hence the roots can only be determined numerically for
specific choices of λ, α, β, γ and thus the optimization must also be done numerically.

6 The mixture free energy

As mentioned above, one of the goals of considering higher order Morita approxi-
mations is to find an approximation which fully satisfies property (ii), i.e. which is
truly localized along the line β = αp/(1 − p) except at α = β = 0 for γ ≤ 0.
For such a phase to exist, κ

(σ)
U (α, β, γ ) would have to be strictly greater than the

corresponding mixture free energy. For a given set of λ’s the mixture arises when
the square root singularities, z1 and z2, are equal in magnitude and they dominate any
other singularities.

For σ = 2, z1 = w
−1/σ
0
2 and z2 = w

−1/σ
2
2 . Here w0 corresponds to the choice

of s1 = s0 = 0 in Eq. 24, i.e. both vertices are above the interface. Similarly,
w2 corresponds to the choice of s1 = 1, s0 = 0 in Eq. 24, i.e. both vertices are
below the interface. In a similar fashion, an exact expression can be obtained for
z1 and z2, as functions of α, β, γ, λ, for other values of σ . With these expressions,
we can determine the mixture free energy by constraining z1 = z2, assuming z1 =
min{log |z1|, log |z2|, . . . , log |z2+nr |}, and then solving for κ

(σ)
U (α, β, γ ) in Eq. 28.

Thus, for σ = 2, the constrained limiting mixture free energy of order 2 is equal to

κ
(2)
mix(α, β) = log 2 + min

g,λ

[
−q(σ )(λ) + 1

σ
log w2 + g

σ
(log w0 − log w2)

]
(29)

which is independent of γ and where g is a Lagrange multiplier introduced to impose
the constraint that log z1 = log z2. In the solution, g can be interpreted as the propor-
tion of walks that are entirely above the interface and hence we expect that g ∈ [0, 1].
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For arbitrary but fixed σ ≥ 1, the solution yields the constrained limiting mixture
free energy of order σ and is given by

κ
(σ)
mix(α, β) = log 2 + 1

σ

σ∑

m=0

(
σ

m

)
pm(1 − p)σ−m log(geαm + (1 − g)eβ(σ−m))

(30)

where g ∈ [0, 1] is the first solution in [0, 1] to

1 =
σ∑

m=0

(
σ

m

)
pm(1 − p)σ−m eαm

geαm + (1 − g)eβ(σ−m)
. (31)

Given any γ and any α, β > 0, our goal is to find a choice of σ such that
κ

(σ)
U (α, β, γ )> κ

(σ)
mix(α, β). To investigate this we consider lower bounds on

κ
(σ)
U (α, β, γ ) and determine σ such that the lower bound is greater than κ

(σ)
mix(α, β).

The lower bounds are discussed in the next section.

7 Lower bounds

We next explore lower bounds on the quenched average free energy, κ̄(α, β, γ ), with
a focus on p = 1/2 and α ≥ β. By Eq. 12, any lower bound on κ̄(α, β, γ ) will also
be a lower bound on κ

(σ)
U (α, β, γ ), for any σ ≥ 0.

The simplest lower bound on κ̄(α, β, γ ) is max{dA(α), dB(β)} which for p = 1/2
and α ≥ β is

κ̄(α, β, γ ) ≥ dA(α) = log 2 + α/2. (32)

The next type of lower bound comes from exact enumeration. Using arguments as
in [9, Lemma 1],

κ̄(α, β, γ ) = sup
n

〈
n−1 log Zn(α, β, γ |χ)

〉
≥

〈
n−1 log Zn(α, β, γ |χ)

〉
= κ̄n(α, β, γ ),

(33)

for any n ≥ 0. In Fig. 2a, we plot κ̄26(α, α, 0) and κ
(σ)
mix(α, α, 0) for σ = 2, 4, . . . , 12.

We see that for σ = 12, γ = 0 and β = α ≥ α∗ ≈ 8.35 the lower bound exceeds
the constrained limiting mixture free energy. Hence, at least for γ = 0, σ = 12 and
sufficiently large α, there will be a truly localized phase in the first quadrant along the
line α = β. In Fig. 2b, we plot κ̄26(α, α, 0.5) and κ

(σ)
mix(α, α, 0.5) for σ = 2, 4, . . . , 12.

We see that for σ = 12, γ = 0.5 and β = α ≥ α∗ ≈ 6.3 the lower bound exceeds
the constrained limiting mixture free energy. Hence, at least for γ = 0.5, σ = 12 and
sufficiently large α, there will be a truly localized phase in the first quadrant along the
line α = β.
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Fig. 2 The constrained limiting mixture free energy (Eq. 29) and the exact enumeration lower bound (Eq.

33) for n = 26 versus α: κ
(σ)
mix(α, α, γ ) (dotted lines) from top-right to bottom-right for σ = 2, 4, 6, 8, 12,

and exact enumeration lower bound, κ̄26(α, α, γ ) (solid black line). In (a) γ = 0. In (b) γ = 0.5. Note in (a)

that κ̄26(α, α, 0) ≥ κ
(12)
mix (α, α, 0) for all α ≥ α∗ ≈ 8.35 and in (b) that κ̄26(α, α, 0.5) ≥ κ

(12)
mix (α, α, 0.5)

for all α ≥ α∗ ≈ 6.3

Another approach to obtaining a lower bound comes from considering, for each
colouring χ , a subset of bilateral Dyck paths such that each path in the subset has the
same value, h(α, β, γ |χ), for the Hamiltonian H(α, β, γ, ω|χ). In this case,

κ̄n(α, β, γ ) =
〈
n−1 log Zn(α, β, γ |χ)

〉
≥

〈
n−1 log gn(χ)eh(α,β,γ |χ)

〉

=
〈
n−1 log gn(χ)

〉
+

〈
n−1h(α, β, γ |χ)

〉
,

(34)
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where gn(χ) is the number of bilateral Dyck paths, ω, in the subset for which
H(α, β, γ, ω|χ) = h(α, β, γ |χ). Equation 34 combined with Eq. 33 then gives a
lower bound on κ̄(α, β, γ ).

We use a generalized version of this type of argument to obtain a lower bound
which is expected to be best for any γ and large α � β. The goal is to investigate
how good the Morita approximations are well-within the localized region. Given a
colouring χ , the general idea is to consider bilateral Dyck paths obtained by placing
all the As above, and if there is a run of 3 or more consecutive Bs starting at an even
vertex, then we allow them to behave as in an adsorption at an impenetrable surface
where the surface is y = 0 and the walk lies in the half-space y ≤ 0. This yields, for
each n ≥ 2, the following lower bound for κ̄(α, β, γ ),

κ
(n)
LB (α, β, γ ) = 1

2
α + 4

19
β + 3

38
γ

+ 9

38

n∑

i=1

(
1

4

)i

log
(
Za

i (γ − β)
) +

n∑

i=1

(
c1r i

1 + c2r i
2

)
log di ,

(35)

where Za
i (x) is the homopolymer partition function for adsorption at an impenetra-

ble surface for Dyck paths of length 2i with surface interaction energy x (see [7],
Sect. 3.2) and di is the number of Dyck paths of length 2i . The term, c1r i

1 + c2r i
2,

is known exactly for each i as it can be determined from the probability that the
first run of 3 or more consecutive Bs starting at an even vertex occurs at the i th step
of the walk. In fact, the constants (up to 6 significant decimal places) are given by
c1 = 0.004437, r1 = 0.890388, c2 = −0.001147, r2 = −0.140388. Similarly the
other constant coefficients in Eq. 35 can be determined from the colour distribution.
An explicit formula for dn can be determined from the Dyck path generating function

D(z) = ∑
n dnzn = 1−√

1−4z
2z (see [15]).

8 Results for p = 1/2

For fixed γ ≤ γ
(1)
L = 2 log 2, any α and β ≤ β1(α, γ ), the Morita approximation

free energy κ
(σ)
U (α, β, γ ) = dA(α) = α/2 + log 2 for all σ ≥ 1 (by [11]). Therefore

we confine our discussion of bounds on the limiting quenched average free energy,
κ̄(α, β, γ ), to the region β > β1(α, γ ). Even though the delocalized phase bound-
ary does not change as the order of the Morita approximation increases, the Morita
approximation bounds on the limiting quenched average free energy do improve. In
particular, for large enough γ ≤ γ

(1)
L and high enough Morita approximation order σ ,

we will show that the whole localized region is consistent with property (ii), i.e. the
limiting density of visits is strictly positive and hence the mixture region disappears
along the α = β line. The evidence from Figs. 2a and b, where the exact enumeration
lower bound κ̄26(α, α, γ ) is larger than the mixture free energy κ

(12)
mix (α, α, γ ) for large

α, suggests that there is a σ ≤ 12 that may be sufficient. We explore this further next.
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Fig. 3 For γ = 0.5 and β = α, bounds on κ̄(α, α, 0.5) are shown: Morita upper bounds, κ
(σ)
U (α, α, 0.5)

(top three curved lines) for σ = 2, 4, 6, κ
(8)
U (α, α, 0.5) (*), exact enumeration lower bound κ̄26(α, β =

α, γ = 0.5) (solid bottom line). In (b) A closer view is shown

In Fig. 3a we plot the Morita upper bounds (κ(σ)
U ) and our best lower bound, the

exact enumeration lower bound (κ̄26), along the α = β line for γ = 0.5. Figure 3b
zooms into Fig. 3a for small values of α. The top curve is κ

(2)
U , which consists of a truly

localized section (dash-dot line for α ≤ 0.87298039) and a mixture section (dotted
line for α > 0.87298039). The next curve (from top to bottom) is κ

(4)
U , which consists

of two truly localized sections (dash-dot lines for α ≤ 0.9528422 and α ≥ 3.5338275)
and a mixture section (dotted line for 0.9528422 < α < 3.5338275). The third curve
(from top to bottom) is κ

(6)
U , which consists of two truly localized sections (dash-dot

lines for α ≤ 1.0704566 and α ≥ 2.213918) and a mixture section (dotted line for
1.0704566 < α < 2.213918). The upper bounds κ

(σ)
U for σ ≥ 8 require a lot of
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Table 1 For γ = 0.5 and β = α, bounds on κ̄(α, α, 0.5) at α = 2, 4, . . . , 10 are listed by the method used
(bnd) and the order (σ )

σ bnd α = 2 4 6 8 10

1[2] 2.12692 4.01814 6.00247 8.00033 10.00004
2Morita 2.02439 3.51994 5.01986 6.51986 8.01986
4Morita 1.96212 3.33706 4.75348 6.18781 7.62488
6Morita 1.92765 3.26712 4.65732 6.06540 7.46704
8Morita 1.90636 3.23245 4.60677 5.97210
26LBee 1.77219 3.02470 4.31546 5.61333 6.91230
400LB 1.680917 2.940582 4.2032309 5.466319 6.72946

The case 1[2] is based on results of [7], the Morita bounds for σ = 2, 4, 6, 8 are based on Eq. 28; LBee is
an exact enumeration lower bound as in Eq. 33; LB is the lower bound from Eq. 35

computation time and hence we only plot a few points for κ
(8)
U . The points marked by

a (*), just below κ
(6)
U , correspond to κ

(8)
U , which consists entirely of a truly localized

free energy term (the same occurs for higher σ and higher γ values). Figure 2b showed
that that the mixture disappeared for σ ≥ 12 and large enough α (by comparing κ̄26

against κ
(σ)
mix) and now we see that in fact it ceases to exist for σ ≥ 8 and any α. Hence,

the whole line α = β is truly localized and is therefore consistent with property (ii),
i.e. the limiting density of visits is strictly positive. The upper and lower bounds for
various values of σ are shown in Table 1 along the α = β line for γ = 0.5. It is clear
from Figs. 3a and b and from Table 1 that the Morita approximation upper bounds
κ

(σ)
U improve as σ increases.

We note in general that for σ ≥ 4 the calculations are all numerical and hence, for
example, although we report above that κ

(σ)
U = κ

(σ)
mix in intermediate regions of α for

σ = 4, 6, we have not ruled out the possibility that the pole (characterizing the truly
localized phase) is so close to the square root singularity (characterizing the mixture)
that they are numerically indistinguishable.

Along the α = β line, the upper and lower bounds do not get very close together.
However, the bounds are much better in other parts of the localized region. For exam-
ple, Fig. 4 presents the case of fixed β = 2.5 and fixed γ = 0.5. The Morita upper
bounds (κ(σ)

U ) and the best lower bound, κ(400)
LB , are shown. The top curve is κ

(2)
U , which

consists entirely of a mixture. The next curve (from top to bottom) is κ
(4)
U , which con-

sists of a mixture section (dotted line for α < 5.286769) and a truly localized section
(dash-dot line for α ≥ 5.286769. The third curve (from top to bottom) is κ

(6)
U , which

consists entirely of a truly localized phase (the same occurs for higher σ values). The
points marked by a (*), just below κ

(6)
U , correspond to κ

(8)
U , which consists entirely of a

truly localized phase. The upper and lower bounds for various values of σ with a fixed
value of β = 2.5 and fixed γ = 0.5 are shown in Table 2. It is clear again from Fig. 4
and Table 2 that the Morita approximation (upper bound) improves as σ increases,
and that the upper bound, κ

(8)
U , and lower bound, κ

(400)
LB , are very close together for

large α.
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Fig. 4 For γ = 0.5, β = 2.5, bounds on κ̄(α, 2.5, 0.5) are shown: Morita upper bounds, κ
(σ)
U (α, 2.5, 0.5)

(top three curved lines) for σ = 2, 4, 6, κ
(8)
U (α, 2.5, 0.5) (*), lower bound κ̄LB(α, 2.5, 0.5) (solid bottom

line)

Table 2 For γ = 0.5 and β = 2.5, bounds on κ̄(α, β = 2.5, γ = 0.5) at α = 2.5, 3.5, . . . , 9.5 are listed
by the method used (bnd) and the order (σ )

σ bnd α = 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5

1[2] 2.5788 3.0556 3.5474 4.0445 4.5434 5.0430 5.5429 6.0428
2Morita 2.3965 2.8228 3.3009 3.7936 4.2910 4.7900 5.2897 5.7895
4Morita 2.3044 2.7023 3.1392 3.5885 4.0628 4.5544 5.0515 5.5505
6Morita 2.2555 2.6401 3.0760 3.5490 4.0343 4.5245 5.0184 5.5144
8Morita 2.2308 2.6117 3.0567 3.5299 4.0154 4.5087 5.0053 5.5035
400LB 1.9951 2.4951 2.9951 3.4951 3.9951 4.4951 4.9951 5.4951
26LBee 2.0773 2.4371 2.8604 3.3132 3.7799 4.2534 4.7304 5.2091

The case 1[2] is based on results of [7], the Morita bounds for σ = 2, 4, 6, 8 are based on Eq. 28; LBee is
an exact enumeration lower bound as in Eq. 33; LB is a lower bound based on Eq. 35

9 Conclusions

We have developed a direct renewal approach for obtaining Morita approximations of
arbitrary even order. These approximations lead, with increasing order, to a sequence
of improved upper bounds on the limiting quenched average free energy of bilateral
Dyck path localization. We have also obtained explicit expressions for the correspond-
ing constrained limiting mixture free energies, and we have obtained lower bounds on
the limiting quenched average free energy of bilateral Dyck path localization.

With these results, for p = 1/2, we are able to show that it is possible to eliminate
the mixture phase from the order σ Morita approximation phase diagram along the line
α = β for sufficiently high γ and σ . We have also shown that well-within the local-
ized region, one can obtain the limiting quenched average free energy very precisely
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(to within ±0.01) based on the Morita approximation of order 8 and the lower bound
in Eq. 35 with n = 400.

We have investigated properties of the mixture phase boundaries for various values
of α, β, γ (including γ < 0) and for Morita approximations of order 2 ≤ σ ≤ 12.
Further results from these investigations will be reported in a future paper. We are
still investigating which order of Morita approximation is sufficient to eliminate the
mixture from the line α = β for all γ .

Acknowledgements The authors wish to acknowledge helpful conversations with Stu Whittington and
Enzo Orlandini. We also wish to acknowledge financial support from the University of Saskatchewan and
NSERC of Canada, and computer resource support from WestGrid. The authors also greatly appreciated
the hospitality of the Chemical Physics Theory Group, Department of Chemistry, University of Toronto,
when some of the results were obtained.

References

1. J.S. Phipps, R.M. Richardson, T. Cosgrove, A. Eaglesham, Neutron reflection studies of copolymers
at the hexane/water interface. Langmuir 9, 3530–3537 (1993)

2. B.J. Clifton, T. Cosgrove, R.M. Richardson, A. Zarbakhsh, J.R.P. Webster, The structure of block
copolymers at the fluid/fluid interface. Physica. B. 248, 289–296 (1998)

3. C.E. Soteros, S.G. Whittington, The statistical mechanics of random copolymers. J. Phys. A. 37,
R1–R47 (2004)

4. R. Martin, M.S. Causo, S.G. Whittington, Localization transition for a randomly coloured self-avoiding
walk at an interface. J. Phys. A. 33, 7903–7918 (2000)

5. N. Madras, S.G. Whittington, Localization of a random copolymer at an interface. J. Phys. A. 36,
923–938 (2003)

6. J. Alvarez, E. Orlandini, C.E. Soteros, S.G. Whittington, Higher order Morita approximations for
random copolymer adsorption. J. Phys. A: Math. Theor. 40, F289–F298 (2007)

7. E. Orlandini, A. Rechnitzer, S.G. Whittington, Random copolymers and the Morita approximation:
polymer adsorption and polymer localization. J. Phys. A. 35, 7729–7751 (2002)

8. G. Iliev, A. Rechnitzer, S.G. Whittington, Random copolymer localization and the Morita approxima-
tion. J. Phys. A. 38, 1209–1223 (2005)

9. E.W. James, C.E. Soteros, S.G. Whittington, Localization of a random copolymer at an interface: an
untethered self-avoiding walk model. J. Phys. A. 36, 11187–11200 (2003)

10. E.J. Janse van Rensburg, Statistical mechanics of directed models of polymers in the square lattice.
J. Phys. A. 36, R11–R61 (2003)

11. F. Caravenna, G. Giacomin, On constrained annealed bounds for pinning and wetting models. Elect.
Comm. Probab. 10, 179–189 (2005)

12. T. Morita, Statistical mechanics of quenched solid solutions with application to magnetically dilute
alloys. J. Math. Phys. 5, 1401–1405 (1964)

13. R.M. Mazo, Free energy of a system with random elements. J. Chem. Phys. 39, 1224–1225 (1963)
14. R. Kühn, Equilibrium ensemble approach to disordered systems. Z. Phys. B. 100, 231–242 (1996)
15. S.K. Lando, Lectures on Generating Functions (American Mathematical Society, Providence, 2003)

123


	Higher order Morita approximations for random copolymer localization
	Abstract
	1 Introduction
	2 The localization model and bilateral Dyck paths
	3 Annealed and first-order Morita approximations for bilateral Dyck paths
	4 Higher order Morita approximations for bilateral Dyck paths
	5 Direct renewal for bilateral Dyck path Morita approximations
	6 The mixture free energy
	7 Lower bounds
	8 Results for p=1/2
	9 Conclusions
	Acknowledgements
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


